Percent	Yield/Percent	Error
---------	---------------	-------

Name	
Period	Date

Calculate (a) the theoretical yield, (b) percentage yield and (c) experimental error.

1. In preparing a paint pigment of chrome yellow, PbCrO₄, a student used 6.94 grams of Pb(No₃)₂ (Mola = 323.2). His actual yield of PbCrO₄ (Molar Mass = 331.2) was 6.37.

 $Pb(NO_3)_2$ + Na_2CrO_4 \rightarrow $PbCrO_4$ + $2NaNO_3$

2. Crystals of chrome alum, $KCr(SO_4)_2$ 12 H_2O (Molar Mass = 499.3), were prepared from 16.2 grams of potassium dichromate, $K_2Cr_2O_7$ (Molar Mass = 294.2), reacting according to the following equation. The a yield was 53.3 grams.

 $K_2Cr_2O_7 + 4H_2SO_4 + 3K_2SO_3 + 20H_2O \rightarrow 2KCr(SO_4)_2 12H_2O + 3K_2SO_4$

3. In preparing the ammonia complex of copper sulfate, $Cu(NH_3)_4$ SO₄ H₂O (Molar Mass = 245.6), by reacting 25.0 grams of $CuSO_4$ 5H₂O (Molar Mass = 249.6) with NH₄OH, 22.2 grams of the product were

 $CuSO_4.5H_2O$ $4NH_4OH$ \rightarrow $Cu(NH_3)_4.SO_4.H_2O$ + $8H_2O$

	24.8 g of calcium carbonate can be decomposed by heating to produce 13.1 g of CaO.
	and an analysis can be decomposed by
A	24 8 a of calcium carbonate car.
4.	24.0 g 01 care-

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

$$2Al(s) + 3CuSO4(aq) \rightarrow Al2(SO4)3(aq) + 3Cu(s)$$

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3O_2(g)$$

$$SiO_2(s) + 3C(s) \rightarrow SiC(s) + 2CO(g)$$